

Visualize and Manage Process Safety Risk in Operations

Practical Case Studies

Simon Jones and Abhilash Menon, Sphera Solutions

Introductions

Simon Jones

Director of Solution Consulting simon.jones@sphera.com

Abhilash Menon

Consultant, Solution Engineering amenon@sphera.com

Visualize and Manage Process Safety Risk in Operations: **Practical Case Studies**

OUTLINE

CHALLENGE	Are our facilities getting any safer? Where should we focus?
	Lessons from 2020 survey of Process Safety professionals
OPPORTUNITY	Industry 4.0 and Digital Twins
	Connecting process safety to the frontline
CASE STUDIES	Practical application of Barrier Health Models to surface systemic risks
	Delivering real-time risk view of all activity & critical equipment status for a major Middle East refinery
DEVELOPMENT	Evolving the model to focusing on major hazard risk – dynamic risk pathways
	A maturity model – setting out your path forward

Q&A - throughout

2020 Process Safety & Operational Risk Mgmt Survey

GOOD INTENTIONS

Companies take safety seriously...

88%

78%

60%

Say safety is part of corporate value structures

Continuously monitor safety performance

Are striving to reduce operational and Major Accident Hazard (MAH) risk exposure

... but risk insights are lacking.

2020 Process Safety & Operational Risk Mgmt Survey

GOOD INTENTIONS

Companies take safety seriously...

88%

78%

60%

Say safety is part of corporate value structures

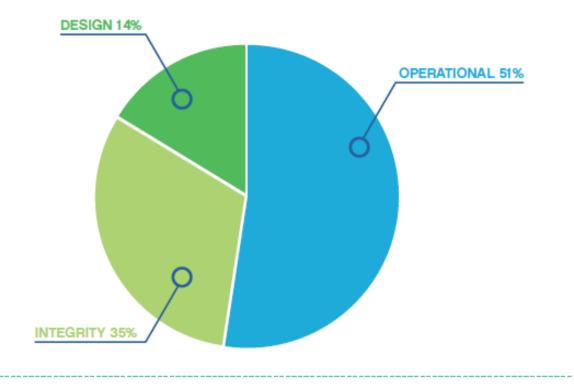
Continuously monitor safety performance

Are striving to reduce operational and Major Accident Hazard (MAH) risk exposure

... but gaps exist between intent and reality.

Say there are gaps between process safety intent and reality

Say risk changes during periodic process safety review periods



EPSC Process Safety Fundamentals (2020)

FIGURE 1. EPSC BENCHMARK RESULTS OF 2019 INCIDENT ROOT CAUSES (ON CA 1000 CLASSIFIED PROCESS SAFETY CASES)

PROCESS SAFETY INCIDENT CAUSES

EPSC Process Safety Fundamentals

Components of a Safety Management System Over the Asset Lifecycle

Design Phase	Detailed Design	Operational Phase
	Hazard Mgmt Process	
Design Intent	Process Hazard Analysis	Periodic PHA revalidation
Process Hazard Analysis	Bowtie Diagrams	Barrier Model
HAZOP'S HAZIDs / ENVIDs	Safety Critical Elements	Maintenance, Inspection, Verification
Develop Initial	Risk Register	
Risk Register Probability Modelling	Risk Modelling (RAM) - acceptability	
Preliminary Quantitative Risk calculations	Critical Tasks and Activities	Risk Assessment - PTW
(acceptability)	Controls & Procedures	Operational Controls & Procedures
Design Safety Case	Detailed Design Safety Case	Operational Safety Case (inc. Verification)
2-3 Years	3-5 Years	0 to 40+ Years

What's in a KPI?

- 79% of staff have up-todate competency training
- Currently achieving 89% of plan attainment

THE SUPERVISOR

- 18% of Safety Critical maintenance is overdue
- 21% of staff need trainingbut where are the gaps?
- 11% of the plan has not been attained

THE FRONTLINE

- The gas detector is out of service on unit
- Unaware of major hazards on the unit; emergency scenarios / drills
- He needs to perform tasks faster to achieve plan attainment target

Digitization in service of safe operations?

A true view of the operational reality by extracting, translating and aggregating the data from sensors, systems and human activity

Common currency for disparate data

Unlocks meaningful relationships, previously unseen

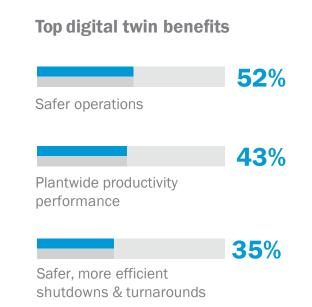
Provides a realistic view of the operational reality

SHOWS IN REAL-TIME

- What's happening
- When it's happening
- Where it's happening
- What's driving the risk

Integrated workflows ensure safe & efficient, consistent execution

2020 Process Safety & Operational Risk Mgmt Survey



Boldly going where no organization could go before



3x growth in digital twin adoption

Close the gaps: Operational Risk Management Digital Twin

The "Physical" Asset The "ORM Digital Twin"

Improve Operational Decision-making

Understand

Predict

Close the gaps: Operational Risk Management Digital Twin

The "Physical" Asset

- Process Safety Critical Equipment status
- Overdue Safety Critical Maintenance
- Inspections
- Permitted Activity
- Operations Activity
- MoC
- Deviations
- Inhibits

Improve Operational Decision-making

- ► Understand how equipment status and activity all come together to impact cumulative risk
- ► Predict cumulative risk on the plant today & in the future
- ► Pro-Actively manage productivity against risk
- ► Monitor the operational risk status of the asset

A true digital twin is a virtual counterpart of a real object, which enables other software, systems and operators to interact with it rather than directly, bypassing the real object.

A digital twins must include:

- A model of the physical object
- Data generated by the object
- Unique one-to-one correspondence with the physical object
- The ability to monitor the object

Visualize and Manage Process Safety Risk in Operations: Practical Case Studies

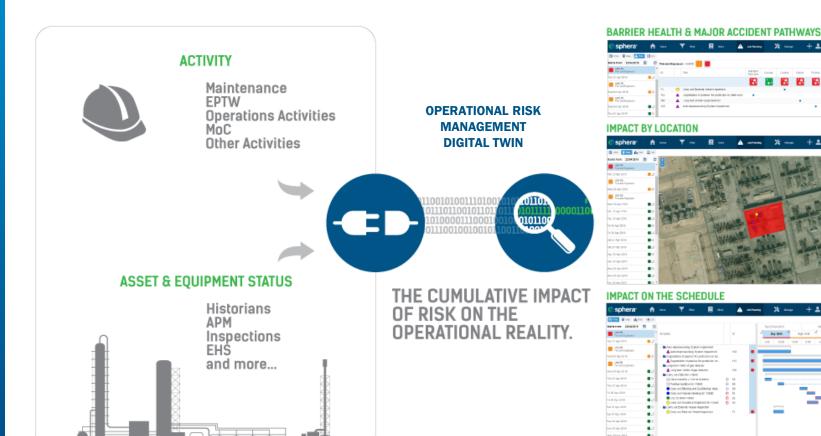
OUTLINE

	CHALLENGE	Are our facilities getting any safer? Where should we focus?
		Lessons from 2020 survey of Process Safety professionals
	OPPORTUNITY	Industry 4.0 and Digital Twins
		Connecting process safety to the frontline
	CASE STUDIES	Practical application of Barrier Health Models to surface systemic risks
		Delivering real-time risk view of all activity & critical equipment status for a major Middle East refinery
	DEVELOPMENT	Evolving the model to focusing on major hazard risk – dynamic risk pathways
		A maturity model – setting out your path forward

Q&A - throughout

CASE STUDY

Objectives


- Close the loop between operations, maintenance and engineering
- Right information at the right time to make the right decisions.
- Create intelligent
 integration of disparate
 data from vendors,
 systems, sensors, and
 human-derived activity to
 radically improve end to
 end operations.

ORM Digital Twin in Action

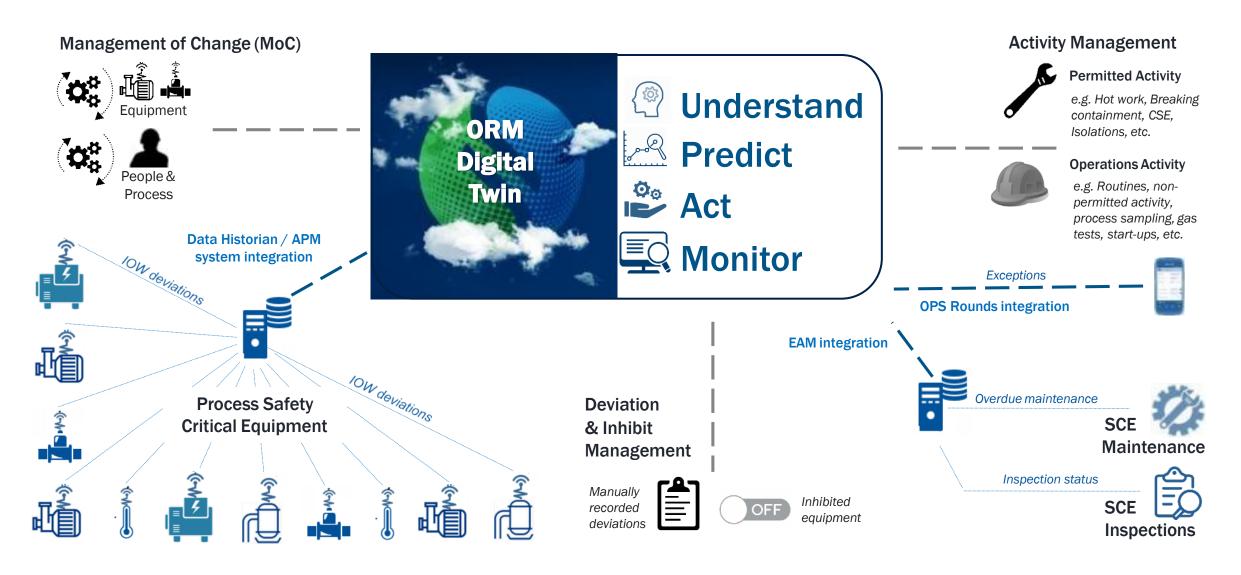
Very large NOC

"Greenfield" site

Big digital vision

*One of many integration use cases

Integrations



Case Study: Data Sources

Case Study: Making Risk Visible by Location

Fundamental Barrier Grouping Model

Maintain Structure Process Containment Ignition Control Detection Systems Protection Systems

Shutdown Systems Emergency Response Life Saving

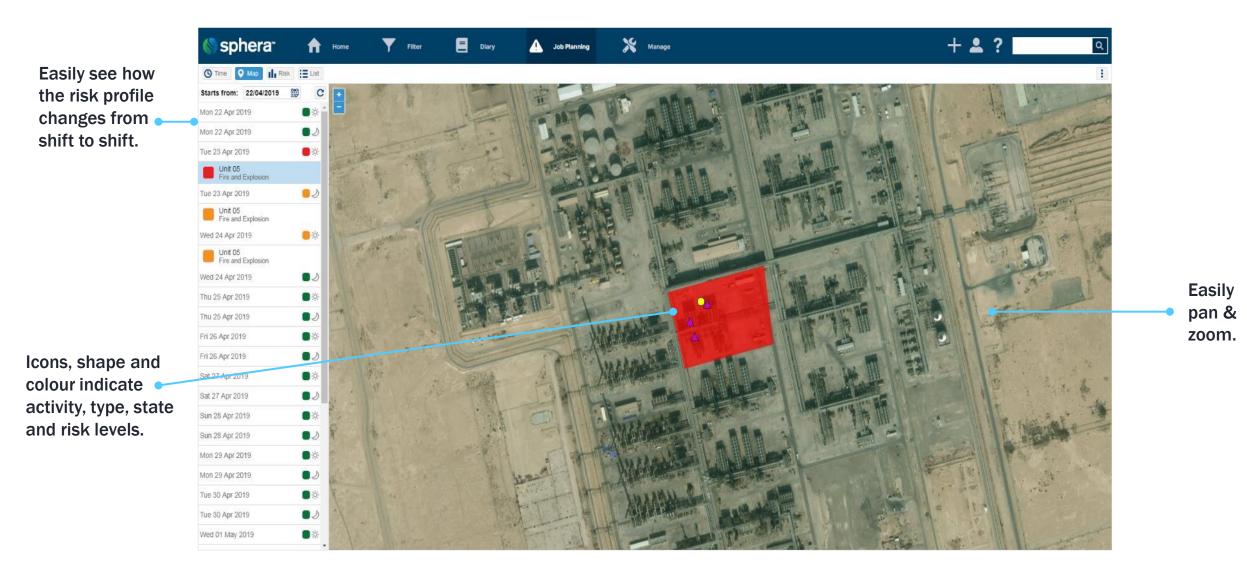
Operational Risk Management Software data mapping

Data generated by vertical, functional silos and systems

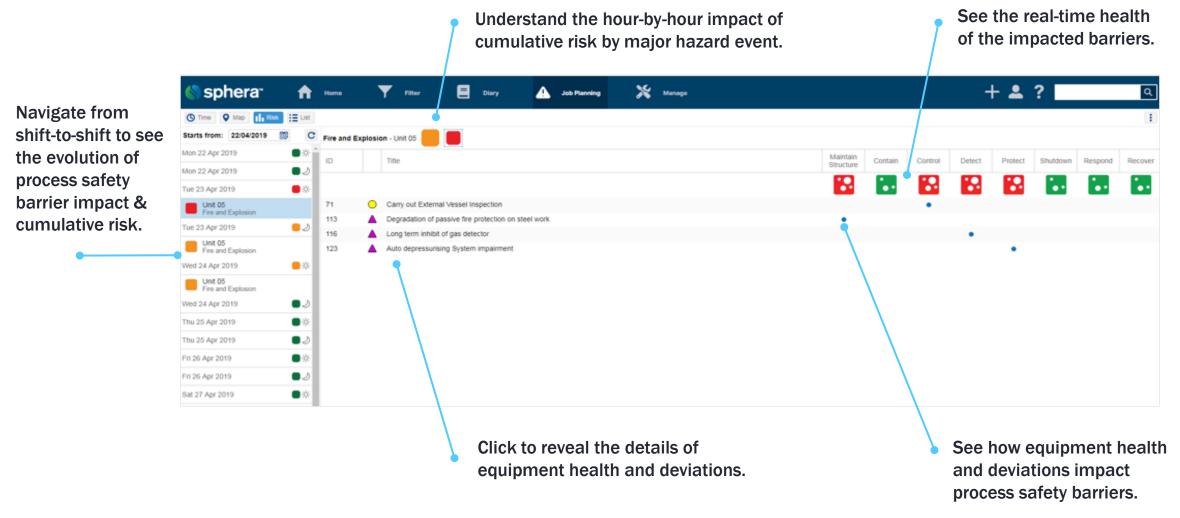
- Overdue Maintenance
- Overdue Inspections
- Planned Maintenance
- High Risk Jobs

- Failed Inspections
- Field Observations
- Management of Change
- Incident reports

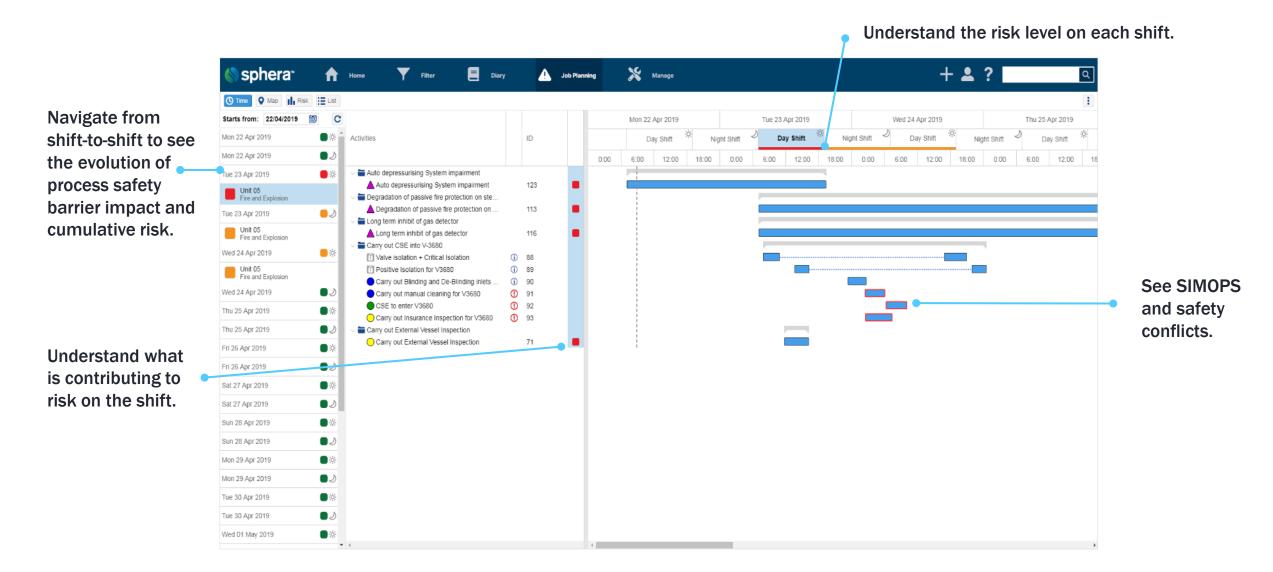
- Critical Equipment Status
- Audit findings
- Shift competence gaps
- IOW Deviations


Three Screens. One Operational Reality.

Know what's happening, where it's happening and what's driving the risk



Location: See the Risk on Your Assets

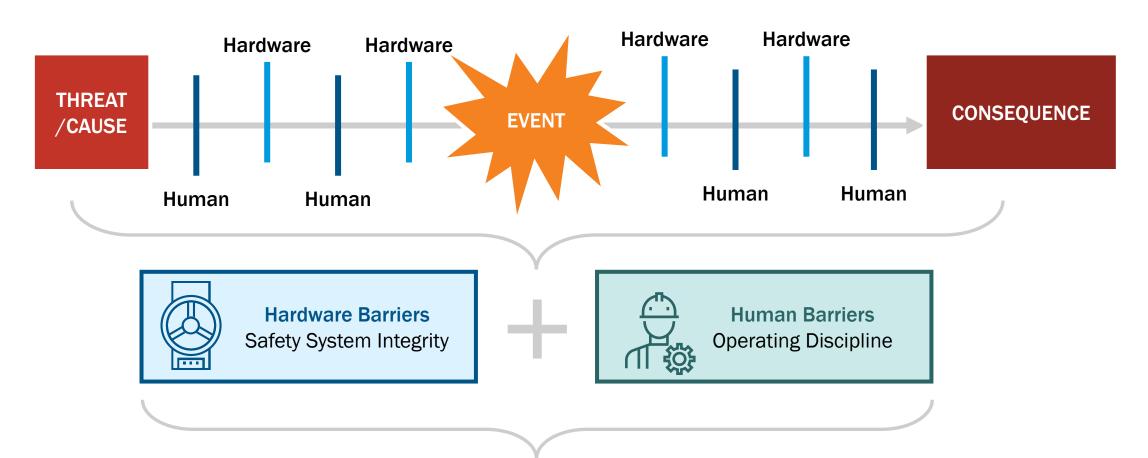


Risk: Dynamic Risk Visualization

In real-time, on the next shift, tomorrow, and beyond.

Time: Understand the Impact on the Schedule

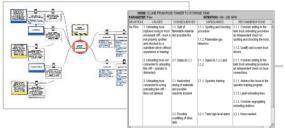
The Technical Safety Challenge


"...court reports from several accidents such as Bhopal, Flixborough, Zeebrügge, and Chernobyl demonstrate that they have not been caused by a coincidence of independent failures and human errors, but by a systematic migration of organizational behavior toward accident under the influence of pressure toward cost-effectiveness in an aggressive, competitive environment."

Risk management in a dynamic society: A modelling problem.
 Jens Rasmussen

Complex systems migrate toward states of high risk but often we don't realize it until something bad happens...

Major Loss Event and Scenario-specific Defined Barriers



Dynamic Risk Pathways

Policies and procedures

Bowtie Diagrams

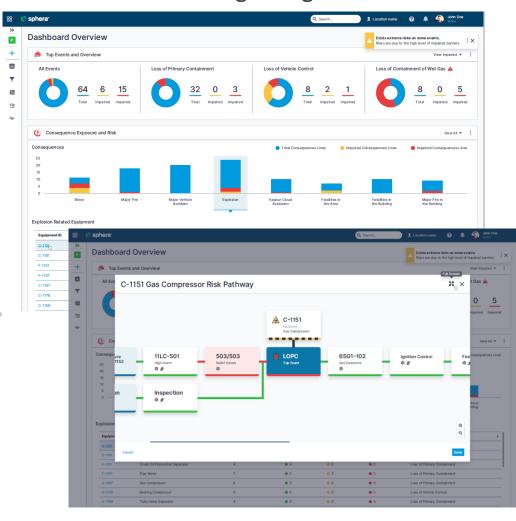
HAZOPs

PHAs

Safety Cases

Complex operating environment

Real-time capture of risk related data



Intelligent translation & mapping

Operators trying to connect the dots

Real Time View of Safeguarding Barrier Status

Emerging Risk Pathways allow for early intervention

Process Safety Management Maturity Progression

49%

are unaware of MAH risk vulnerability

PHAs are conducted.
Audits & LOPC Incidents
reported & Lessons.
KPIs established &
tracked.

COMPLIANT

Process safety system
supports barrier
management. Critical
Barriers and assurance
tasks defined.
Deviation RA process for
non-conformances.

EFFICIENT

Barrier management system provides a near real-time risk view of status of critical barriers and planned work by location to support frontline decisionmaking.

OPTIMIZED

Organizations have access to real-time visibility of barrier impairments with comprehensive tracking of critical equipment, assurance processes and operational data. Risk visualizations based on barrier impact for defined Major Accident Hazard scenarios for assets

LEADER

......

Key themes and conclusions

There are gaps between process safety intent and what happens at the frontline – the dynamic nature of frontline operations is a challenge

Seize the opportunity to rethink safety and risk management in operations – **key takeaways:**

Improve the resilience of our assets using digital tools to drive effective, compliant business processes

Uncover the process safety-related data sources in asset application environment today

Connect these disparate data sources to the frontline to provide dynamic, real-time risk insight to support practical decision making

Reaching Operational and Financial Goals Requires an Integrated Approach to Risk Management

Operationalize, Scale, & Optimize Integrated Risk Management

with our purpose-built solutions supported by information, innovation & insights

Sphera Delivers Integrated Risk Management Around the Globe

References and contacts for follow-up

- 1. Sphera, 2020 Survey on Process Safety and Operational Risk Management, Sept 2020, https://sphera.com/research/2020-psm-orm-survey-report/
- 2. International Association of Oil and Gas Producers, Process Safety Fundamentals, Report 638, Oct 2020, London, UK.
- European Process Safety Centre, Process Safety Fundamentals, Nov 2020, https://epsc.be/Products/PS+Fundamentals.html.
- 4. Verdantix, Buyer's Guide: Digital Twins for Industrial Facilities, May 2020, London, UK.
- International Association of Oil and Gas Producers, Standardization of barrier definitions, Report 544, Apr 2016, London, UK.
- 6. American Petroleum Institute, API Recommended Practice (RP) 754, Process Safety Performance Indicators for the Refining and Petrochemical Industries, API RP 754, 2nd Ed. April 2016, Washington D.C, USA

Simon Jones

Director of Solution Consulting simon.iones@sphera.com

Abhilash Menon
Consultant, Solution Engineering amenon@sphera.com